Moduli of vector bundles on primitive multiple schemes

نویسندگان

چکیده

A primitive multiple scheme is a Cohen-Macaulay $Y$ such that the associated reduced $X=Y_{red}$ smooth, irreducible, and can be locally embedded in smooth variety of dimension $\dim(X)+1$. If $n$ multiplicity $Y$, there canonical filtration $X=X_1\subset X_2\subset\cdots\subset X_n=Y$, $X_i$ $i$. The simplest example trivial to line bundle $L$ on $X$: it $n$-th infinitesimal neighborhood $X$, $L^*$ by zero section. main subject this paper construction properties fine moduli spaces vector bundles schemes. Suppose $Y=X_n$ $n$, extended $X_{n+1}$ $n+1$, let $M_n$ space $X_n$. With suitable hypotheses, we construct $M_{n+1}$ for whose restriction $X_n$ belongs $M_n$. It an affine over subvariety $N_n\subset M_n$ $X_{n+1}$. In general not banal. This applies particular Picard groups. We give also many new examples schemes dualizing sheaf $\omega_Y$ trivial.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli of Toric Vector Bundles

We give a presentation of the moduli stack of toric vector bundles with fixed equivariant total Chern class as a quotient of a fine moduli scheme of framed bundles by a linear group action. This fine moduli scheme is described explicitly as a locally closed subscheme of a product of partial flag varieties cut out by combinatorially specified rank conditions. We use this description to show that...

متن کامل

A Note on Moduli of Vector Bundles on Rational Surfaces

Let (X,H) be a pair of a smooth rational surface X and an ample divisor H on X . Assume that (KX , H) < 0. Let MH(r, c1, χ) be the moduli space of semi-stable sheaves E of rk(E) = r, c1(E) = c1 and χ(E) = χ. To consider relations between moduli spaces of different invariants is an interesting problem. If (c1, H) = 0 and χ ≤ 0, then Maruyama [Ma2], [Ma3] studied such relations and constructed a ...

متن کامل

Vector bundles on contractible smooth schemes

We discuss algebraic vector bundles on smooth k-schemes X contractible from the standpoint of A-homotopy theory; when k = C, the smooth manifolds X(C) are contractible as topological spaces. The integral algebraic K-theory and integral motivic cohomology of such schemes are that of Spec k. One might hope that furthermore, and in analogy with the classification of topological vector bundles on m...

متن کامل

Irreducibility of Moduli Spaces of Vector Bundles on K3 Surfaces

Let X be a projective K3 surface defined over C and H an ample divisor on X. For a coherent sheaf E on X, v(E) := ch(E) √ tdX ∈ H∗(X,Z) is the Mukai vector of E, where tdX is the Todd class of X. We denote the moduli space of stable sheaves E of v(E) = v by MH(v). If v is primitive and H is general (i.e. H does not lie on walls [Y3]), then MH(v) is a smooth projective scheme. In [Mu1], Mukai sh...

متن کامل

Global Sections of Some Vector Bundles on Kontsevich Moduli Spaces

On the Kontsevich moduli space of unpointed stable maps to P1 of genus 0 and degree e, there is a tautological vector bundle of rank e − 1. Global sections of tensor powers of this vector bundle arise when considering holomorphic contravariant tensors on Kontsevich spaces of stable maps to more general projective varieties. The computation of the global sections is reduced to an explicit combin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2023

ISSN: ['1793-6519', '0129-167X']

DOI: https://doi.org/10.1142/s0129167x23500350